One of the following questions will serve as a problem in quiz 2:

1. Given vector $\overrightarrow{\mathbf{a}}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$, what is its magnitude?
2. Let θ be the angle between vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$. What is $\overrightarrow{\mathbf{a}} \circ \overrightarrow{\mathbf{b}}$?
3. Let $\overrightarrow{\mathbf{a}}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle, \overrightarrow{\mathbf{b}}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$. Write the formula for $\overrightarrow{\mathbf{a}} \circ \overrightarrow{\mathbf{b}}$ in terms of $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$.
4. Given vector $\overrightarrow{\mathbf{a}}$, find the unit vector $\overrightarrow{\mathbf{u}}$ having the same direction.
5. Write the formula for the scalar projection of $\overrightarrow{\mathbf{a}}$ onto $\overrightarrow{\mathbf{b}}$.
6. Write the formula for the vector projection of $\overrightarrow{\mathbf{a}}$ onto $\overrightarrow{\mathbf{b}}$.
7. Let θ be the angle between vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$. What is $|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|$?
8. Let $\overrightarrow{\mathbf{a}}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle, \overrightarrow{\mathbf{b}}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$. Write the formula for $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ in terms of $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$.
9. What is the scalar triple product of vectors $\overrightarrow{\mathbf{a}}=, \overrightarrow{\mathbf{b}}$, and $\overrightarrow{\mathbf{c}}$?
10. Let $\overrightarrow{\mathbf{a}}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle, \overrightarrow{\mathbf{b}}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle, \overrightarrow{\mathbf{c}}=\left\langle c_{1}, c_{2}, c_{3}\right\rangle$. Write the formula for the scalar triple product of these vectors.
11. Write the formula for the area of parallelogram formed by vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$.
12. Write the formula for the volume of parallelepiped formed by vectors $\overrightarrow{\mathbf{a}}$, $\overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$.
13. Write the equation of the line with directional vector $\overrightarrow{\mathbf{v}}$, going through point $P\left(x_{0}, y_{0}, z_{0}\right)$:
(a) in vector form
(b) in parametric form
(c) in symmetric form.
14. Write the equation of the plane with normal vector $\overrightarrow{\mathbf{n}}$ going through point $P\left(x_{0}, y_{0}, z_{0}\right)$:
(a) in vector form
(b) in scalar form.
15. Write the equation of tangent line to the curve $\overrightarrow{\mathbf{r}}(t)$ at point $P\left(x_{0}, y_{0}, z_{0}\right)$.
16. Write the formula for the length of curve $\overrightarrow{\mathbf{r}}(t)$ if $a \leq t \leq b$.
17. Let $\overrightarrow{\mathbf{r}}(t)$ be the position vector of a particle. Write the formula for its velocity $\overrightarrow{\mathbf{v}}(t)$ and acceleration $\overrightarrow{\mathbf{a}}(t)$.
18. Let $\overrightarrow{\mathbf{v}}(t)$ be the velocity of a particle. Write the formula for its position vector $\overrightarrow{\mathbf{r}}(t)$ if at time t_{0} the particle was located at point P with radius-vector $\overrightarrow{\mathbf{r}}_{0}$.
